Bitte mit den Pfeiltasten Links/Rechts gewünschten Bericht auswählen und mit der linken Maustaste bestätigen |
Unser Erdmagnetfeld |
|
Das Erdmagnetfeld ist das Magnetfeld, das die Erde umgibt. Es wird von dem so genannten Geodynamo erzeugt. Nahe der Erdoberfläche ähnelt das Feld dem eines magnetischen Dipols; siehe Abbildung unten. Die magnet ischen Feldlinien treten im Wesentlichen auf der Südhalbkugel aus der Erde aus und durch die Nordhalbkugel wieder in die Erde ein. Im Erdmantel verändert sich die Form des Magnet- felde. Oberhalb der Erdatmosphäre wird das Dipolfeld durch den Sonnenwind verformt. |
Magnetfeld |
Man nimmt an, dass das erdmagnetische Feld durch elektrische Ströme im Innern des Erdkerns zu Stande kommt. Diese Ströme entstehen, wenn Mineralien von verschiedener Temperatur und mit verschiedenen elektrischen Eigenschaften zusammenkommen. Man kann das Erdinnere als einen riesigen natürlichen Generator betrachten, der fortwährend mechanische Energie (Erddrehung und Bewegung des plastischen Kerns) in elektrische Energie umwandelt. Alle magnetischen Felder entstehen durch elektrische Ströme, und alle elektrischen Ströme sind von magnetischen Feldern umgeben. |
|
Der Hauptanteil des Erdmagnetfeldes verändert sich nur sehr langsam (Säkularvariation) im Zeitraum von tausenden von Jahren. Heute ist seine horizontale Komponente auf weiten Teilen der Erdoberfläche grob in geographische Nord-Süd-Richtung gerichtet. Abweichungen von dieser Ausrichtung bezeichnet man als Missweisung oder Geographische Deklination. In mittleren und hohen Breiten kommt zu der nordweisenden Horizontalkomponente eine (deutlich stärkere) Vertikalkomponente hinzu, die auf der Nordhalbkugel nach unten, auf der Südhalbkugel nach oben weist. Den Inklinationswinkel der Feldlinien kann man mit einer Kompassnadel messen, deren Drehachse horizontal gelagert ist. Er beträgt in Deutschland etwa 60° gegen die Horizontale. Am Nordpol und Südpol ist er etwa 90°, am Äquator 0°. In guten Magnetkompassen ist die Nadel so austariert, dass sie vor allem auf die Horizontalkomponente anspricht und daher in den meisten Gebieten etwa nach Norden weist. Am geomagnetischen Nordpol befindet sich aus physikalischer Sicht ein magnetischer Südpol. Daher wird dieser Pol besser als der nordanziehende Pol des Erdmagnetfeldes bezeichnet oder als der im Norden liegende Pol des Erdmagnetfeldes. Der Magnetkompass wird bis heute zur Navigation eingesetzt. Die geomagnetischen Pole der Erde fallen nicht genau mit den geographischen Polen der Erde zusammen. Zur Zeit (Stand 2007) ist die Achse des geomagnetischen Dipolfeldes um etwa 11,5° gegenüber der Erdachse geneigt. In erster Näherung entspricht das Dipolfeld dem eines gekippten Stabmagneten, der um ca. 450 km aus dem Erdmittelpunkt in Richtung 140° östlicher Länge verschoben ist (siehe auch Südatlantische Anomalie). Das Dipolmoment M beträgt: M = 7,746·1024 nT·m³ (Stand IGRF-11, 2010) Die jährliche Abnahme zur Zeit: -0,006·1024 nT·m³. In SI Einheiten wird das magnetische Dipolmoment m in Am² angegeben und gemäß m = 4 Ï€/µ0 * M Umgerechnet: m = 7,746 * 1022 Am² Zur näherungsweisen Berechnung des Dipolfelds in Abhängigkeit vom Abstand R dient die Dipolformel: Am Äquator hat das Magnetfeld eine Stärke von ca. 30 µT = 30.000 nT. An den Polen ist der Betrag doppelt so groß. In Mitteleuropa sind es ca. 48 µT, wobei ca. 20 µT in der horizontalen und ca. 44 µT in der vertikalen Richtung auftreten. Im Erdmantel nimmt die magnetische Flussdichte mit wachsender Tiefe stark zu. Dabei verändert sich jedoch auch die Feldform, da nicht dipolförmige Anteile überproportional anwachsen. Bessere Näherungen als das Dipolmodell liefert daher ein Multipolfeld, das aktuelle International Geomagnetic Reference Field (IGRF). Dazu wird das Erdfeld auf ein Potentialfeld zurückgeführt, das nach Kugelflächenfunktionen entwickelt wird. Die aktuellen Entwicklungskoeffizienten (Gauss-Koeffizienten gml und hml) sind im IGRF zu finden. Alle Modelle sollen vor allem die Form des gemessenen Feldes nahe der Erdoberfläche beschreiben. Tatsächlich wird das erdmagnetische Hauptfeld nicht durch Stabmagneten im Erdinneren erzeugt, sondern durch Ströme (s.u.). Bei geeigneter Wahl des Koordinatenursprungs und seiner Ausrichtung lässt sich das Erdfeld an der Oberfläche zur Zeit zu 90 Prozent durch ein Dipolfeld beschreiben. Das erdmagnetische Hauptfeld aus dem Erdkern trägt zu mehr als 95 Prozent zur Feldstärke bei. Die äußeren Anteile der Ionosphäre und Magnetosphäre (oberhalb 100 km Höhe) liefern einen Anteil von bis zu 2 Prozent. In der gleichen Größenordnung liegen die Magnetfelder oberflächennaher (bis max. 20 km Tiefe) Störkörper in der Erdkruste. Ihre Ursache ist das gehäufte Auftreten von selbst magnetisierten Mineralien (remanente Magnetisierung) oder Mineralien mit hoher magnetischer Suszeptibilität (induzierte Magnetisierung). Unterhalb von 20 km wird die Curietemperatur der Mineralien überschritten und es kann keine statischen ferromagnetischen Stoffe mehr geben. An der Erdoberfläche erzeugen die Störkörper lokale geomagnetische Anomalien von einigen 100 bis 1000 nT Stärke. Die mathematische Analyse der gemessenen Anomalien führt über Modellannahmen zu einem Störpotential, mit dessen Hilfe sich Lage und Größe der realen, verborgenen Störkörper abschätzen lassen. Die größte Anomalie des Magnetfeldes der Erde ist die Kursker Magnetanomalie im Umfeld einer Eisenlagerstätte. Eine kleinere, bereits von Alexander von Humboldt festgestellte Anomalie in Deutschland ist die durch Blitzschläge herbeigeführte oberflächliche Magnetisierung von Serpentiniten der Münchberger Gneismasse. Das Magnetfeld der Erde lenkt die geladenen Teilchen des Sonnenwindes ab und wird dadurch in großen Höhen stark verformt. Satellitenmessungen zeigen, dass sich auf der sonnenabgewandten Seite ein Plasmaschweif ausbildet. Durch magnetische Stürme, die durch Sonneneruptionen und den Sonnenwind verursacht werden, wird die Stärke des Feldes kurzzeitig in der Größenordnung von einigen 100 bis 1000 nT verändert. Zusätzlich führt die Sonneneinstrahlung auf der Tagseite zu einer stärkeren Ionisation in den oberen Atmosphärenschichten. Die hiermit verbundenen elektrischen Stromsysteme beeinflussen das Erdmagnetfeld ebenfalls in der Größenordnung von einigen 10 nT. Dieser Effekt wird als Sq-Variation bezeichnet. Geostationäre Satelliten in einer Flughöhe von 36.000 km sehen ein Erdmagnetfeld in der Größenordnung von 100 nT. Die Störungen durch die Sonne liegen im selben Bereich und dominieren bei starken magnetischen Stürmen. |
|
Sonnenflairs |
|
Dieser Bericht unterliegt der GNU Lizens für freie Dokumentation by Klaus www.mysterylands.eu |