Bitte mit den Pfeiltasten Links/Rechts gewünschten Bericht auswählen und mit der linken Maustaste bestätigen |
Zwilingsparadaxon |
|
Das Zwillingsparadoxon (oder Uhrenparadoxon) ist ein Gedanken experiment, das einen scheinbaren Widerspruch in der speziellen Relativitätstheorie beschreibt. Danach fliegt einer von zwei Zwillingen mit nahezu Lichtgeschwindigkeit zu einem fernen Stern und kehrt anschließend mit derselben Geschwindigkeit wieder zurück. Während der Flugphasen altert der jeweils andere Zwilling als Folge der Zeitdilatation langsamer. Nach der Rückkehr auf der Erde stellt sich aber heraus, dass der dort zurückgebliebene Zwilling älter geworden ist als der gereiste. |
|
Der zugrunde liegende Gedanke basierte auf einem Hinweis Albert Einsteins aus dem Jahre 1905, wonach eine Uhr, welche sich von einem beliebigen Punkt entfernt und dann wieder dorthin zurückkehrt, gegenüber einer die ganze Zeit an diesem Punkt verbliebenen Uhr nachgeht. 1911 dehnte Einstein diese Überlegung auch auf lebende Organismen aus. Da die Zeitdilatation jedoch symmetrisch |
Wurmloch |
ist, das heißt jeder sollte die Uhr des anderen langsamer gehen sehen, ergab sich die Frage, welche Uhr beim Zusammentreffen denntatsächlich nachgeht. Dies wurde 1911 von Paul Langevin als Erstem korrekt analysiert, und 1911/13 gelang es Max von Laue, die Erklärung von Langevin mit Hilfe des Minkowkischen Raumzeit-Formalismus sehr viel klarer und anschaulicher darzustellen. Wie Langevin und Laue zeigten, beruht das Paradoxon auf intuitiven, aber unzulässigen Annahmen über das Wesen der Zeit, wie beispielsweise der Gleichzeitigkeit. Insbesondere wird dabei der Richtungswechsel am Umkehrpunkt der Reise ignoriert. Durch diese Umkehr sind die beiden Zwillinge nicht gleichwertig, sondern ein Beobachter wechselt sein Inertialsystem, wodurch sich für ihn die Beurteilung der Gleichzeitigkeit der Ereignisse ändert. Hingegen für den anderen Zwilling ändert sich nichts, sodass bei diesem die Betrachtung der reinen Zeitdilatation das richtige Endergebnis liefert. Für den Altersunterschied der Zwillinge ist allerdings nur die zwischen den Richtungsänderungen zurückgelegte Distanz von Bedeutung (bzw. deren Verteilung auf den Weltlinien, wenn beide Zwillinge Richtungsänderungen vornehmen), nicht jedoch die Größe der dabei auftretenden Beschleunigung, da diese im Vergleich zur Reisezeit bei gleichförmiger Bewegung beliebig klein gehalten werden kann. So liefert auch der Fall, wo beim Umkehrpunkt lediglich die Uhrzeit per Funksignal auf einen anderen, entgegenkommenden Beobachter übertragen wird, dasselbe Ergebnis wie im Fall mit Beschleunigung. Denn in der Relativitätstheorie werden Raum und Zeit zur sogenannten Raumzeit vereinigt. Jeder Reisende beschreibt in ihr eine Kurve, deren Länge die Zeit repräsentiert, die für ihn dabei vergeht. Ein wesentlicher Unterschied zwischen dem dreidimensionalen Raum und der vierdimensionalen Raumzeit besteht daher darin, dass eine gerade Strecke im Raum die kürzeste Verbindung zwischen zwei Punkten darstellt, die ein Reisender zurücklegen kann, während eine gerade Strecke zwischen gegebenen Punkten in der Raumzeit die längste aller möglichen Reiserouten ist. Während der Nachweis der Zeitdilatation selbst in Teilchenbeschleunigern bereits Routine ist, konnte auch eine Zeitdifferenz in der Art des Zwillingsparadoxons (also mit Hin- und Rückflug) bei einem Interkontinentalflug (1971) indirekt durch den Vergleich zweier Atomuhren in bester Übereinstimmung mit der Vorhersage der Relativitätstheorie nachgewiesen werden. Bei diesem Hafele-Keating-Experiment spielen jedoch auch die Erdrotation und Effekte der allgemeinen Relativitätstheorie eine Rolle. |
|
Auflösung des Zwillingsparadoxons |
|
Zur Auflösung des Zwillingsparadoxons im Detail sind folgende zwei Fragen zu beantworten:
Das wechselseitig langsamere Altern der ZwillingeZur Beantwortung der ersten Frage betrachte man, wie der Zwilling auf der Erde überhaupt feststellt, dass der fliegende langsamer altert. Dazu vergleicht er die Anzeige auf einer Uhr, die der fliegende Zwilling mit sich führt, mit zwei ruhenden Uhren, die sich am Anfang und am Ende einer bestimmten Teststrecke befinden, die der fliegende Zwilling passiert. Dazu müssen diese beiden Uhren aus der Sicht des ruhenden Zwillings natürlich auf die gleiche Zeit eingestellt worden sein. Der fliegende Zwilling liest zwar bei den Passagen dieselben Uhrstände ab wie der ruhende, er wird aber einwenden, dass seiner Ansicht nach die Uhr am Ende der Teststrecke im Vergleich zu der am Anfang vorgeht. Der gleiche Effekt tritt auf, wenn der fliegende Zwilling analog das Altern des irdischen mit zwei Uhren beurteilt. Ursache ist der Umstand, dass es nach der Relativitätstheorie keine absolute Gleichzeitigkeit gibt. Die Gleichzeitigkeit von Ereignissen an verschiedenen Orten und damit auch die angezeigte Zeitdifferenz von zwei dortigen Uhren wird von Beobachtern, die sich mit verschiedenen Geschwindigkeiten bewegen, unterschiedlich beurteilt. Eine genaue Betrachtung der Verhältnisse zeigt, dass die wechselseitige Einschätzung einer Verlangsamung der Zeit daher nicht zu einem Widerspruch führt. Hilfreich sind dazu die vergleichsweise anschaulichen Minkowski-Diagramme, über die sich dieser Sachverhalt grafisch und ohne Formeln nachvollziehen lässt. Die wechselseitige Verlangsamung steht in Einklang mit dem Relativitätsprinzip, das besagt, dass alle Beobachter, die sich mit konstanter Geschwindigkeit gegeneinander bewegen, völlig gleichberechtigt sind. Man spricht von Inertialsystemen, in denen sich diese Beobachter befinden. |
|
Das unterschiedliche Altern der Zwillinge |
|
Zur Beantwortung der zweiten Frage ist die Abbrems- beziehungsweise Beschleunigungsphase zu betrachten, die für die Rückkehr des fliegenden Zwillings erforderlich ist. Während dieser Phase vergeht nach Einschätzung des fliegenden Zwillings die Zeit auf der Erde schneller. Der dort zurückgebliebene Zwilling altert dabei soweit nach, dass er trotz des langsameren Alterns während der Phasen mit konstanter Geschwindigkeit im Endergebnis der Ältere ist, so dass sich auch aus der Sicht des fliegenden Zwillings kein Widerspruch ergibt. Das Ergebnis nach der Rückkehr steht auch nicht im Widerspruch zum Relativitätsprinzip, da die beiden Zwillinge aufgrund der Beschleunigung, die nur der fliegende erfährt, bezüglich der Gesamtreise nicht als gleichwertig betrachtet werden können. Ursache dieser Nachalterung ist wiederum die Relativität der Gleichzeitigkeit. Während der Beschleunigung wechselt der fliegende Zwilling gewissermaßen ständig in neue Inertialsysteme. In jedem dieser Inertialsysteme ergibt sich jedoch für den Zeitpunkt, der gleichzeitig auf der Erde herrscht, ein anderer Wert und zwar derart, dass der fliegende Zwilling auf eine Nachalterung des irdischen schließt. Je weiter sich die Zwillinge voneinander entfernt haben, umso größer ist dieser Effekt. |
|
Die Verhältnisse sind im dargestellten Weg-Zeit-Diagramm einer Reise von A nach B und wieder zurück mit 60 % der Lichtgeschwindigkeit c dargestellt. Die Bahn des zurück- bleibenden Zwillings verläuft entlang der Zeitachse von A1 nach A4, der fliegende nimmt den Weg über B. Jede horizontale Linie im Diagramm entspricht Ereignissen, die aus der Sicht des Zwillings auf der Erde gleichzeitig erfolgen. Der fliegende Zwilling dagegen schätzt beim Hinflug alle Ereignisse auf den roten Linien als gleichzeitig ein und beim Rückflug die auf den blauen. Unmittelbar vor seiner Ankunft am Ziel B befindet sich der ruhende Zwilling nach Ansicht des fliegenden daher bei A2 und erscheint daher |
|
weniger gealtert. Während der Umkehrphase, die hier als so kurz angenommen wurde, dass sie im Diagramm nicht zu erkennen ist, schwenken die Linien der Gleichzeitigkeit für den fliegenden Zwilling, und sein Bruder auf der Erde altert bis zum Punkt A3 nach. Während der Rückreise nach A4 scheint der Zwilling auf der Erde wieder langsamer zu altern. Da die dargestellten Neigungen der Linien der Gleichzeitigkeit nur von der Reisegeschwindigkeit vor und nach der Umkehrphase abhängen, ist die Stärke der Beschleunigung für die Nachalterungszeit nicht relevant. Der irdische Zwilling spürt von dieser Nachalterung nichts, sondern es handelt sich, wie beschrieben, um einen Effekt, der im Rahmen der speziellen Relativitätstheorie lediglich die Folge einer Beschreibung der Vorgänge aus unterschiedlichen Koordinatensystemen heraus ist, zwischen denen der reisende Zwilling wechselt. Das wird besonders deutlich, wenn man Ereignisse betrachtet, die in Reiserichtung noch weiter von der Erde entfernt sind als der umkehrende Zwilling. Nach Einschätzung des umkehrenden Zwillings läuft dort ab einem gewissen Abstand die Zeit während der Beschleunigungsphase rückwärts. Die Situation ist vergleichbar mit Objekten in einem gewissen seitlichen Abstand vom Straßenrand, die sich schräg hinter einem Autofahrer befinden, die aber nach einer scharfen Kurve im rechten Winkel plötzlich wieder schräg vor ihm liegen können, so dass er ein zweites Mal an ihnen vorbeifährt. In diesem Fall ist es die Drehung des Bezugssystems des Autos, die diesen Gegenstand scheinbar nach vorne befördert hat. Bei all diesen Betrachtungen wurde vorausgesetzt, dass die Zwillinge bei ihrer Einschätzung des Geschehens nicht das, was sie unmittelbar sehen, für die gleichzeitig anderswo stattfindende Realität halten, sondern die ihnen bekannte Ausbreitungsgeschwindigkeit des Lichtes berücksichtigen. So kann beispielsweise der beschriebene Nachalterungssprung nicht unmittelbar beobachtet werden, da die zugehörigen Lichtsignale, die von A2 und A3 auf der Erde ausgehen, erst während der Rückreise beim reisenden Zwilling eintreffen. |
|
Variante ohne Beschleunigungsphasen |
|
Durch Einführen einer dritten Person lässt sich eine Variante des Zwillingsparadoxons formulieren, die völlig ohne Beschleunigungsphasen auskommt. Dabei passiert der reisende Zwilling den Stern mit gleich bleibender Geschwindigkeit, während die dritte Person gleichzeitig den Stern mit einer gleich großen aber zur Erde gerichteten Geschwindigkeit passiert, wobei beide lediglich ihre Uhren abgleichen. Wenn beide auch die Erde mit konstanter Geschwindigkeit passieren und dabei lediglich mit dem irdischen Zwilling Uhrenstände vergleichen, findet überhaupt keine Beschleunigung statt. Die mathematische Behandlung dieses Szenarios und sein Endergebnis sind identisch mit dem zuvor geschilderten, sofern die Dauer der Beschleunigungsphasen vernachlässigbar kurz ist. Diese Variante mit drei Personen demonstriert, dass nicht unbedingt die Beschleunigung als Phänomen das Zwillingsparadoxon auflöst, sondern der Umstand, dass das Geschehen während der Hin- und Rückreise aus unterschiedlichen Inertialsystemen mit unterschiedlichen Einschätzungen der Gleichzeitigkeit heraus beurteilt wird. ZahlenbeispielFür eine Hin- und Rückreise mit 60 % der Lichtgeschwindigkeit zu einem Ziel in 3 Lichtjahren Abstand ergeben sich folgende Verhältnisse (siehe obige Grafik): Aus der Sicht des Zwillings auf der Erde sind für Hin- und Rückweg jeweils 5 Jahre erforderlich. Der Faktor für die Zeitdilatation und die Längenkontraktion beträgt 0,8. Das bedeutet, dass der fliegende Zwilling auf dem Hinweg nur um 5 × 0,8 = 4 Jahre altert. Dieser erklärt sich diesen geringeren Zeitbedarf damit, dass die Wegstrecke sich durch die Längenkontraktion bei seiner Reisegeschwindigkeit auf 3 × 0,8 = 2,4 Lichtjahre verkürzt hat. Da nach seiner Einschätzung auf der Erde die Zeit auch langsamer verstreicht, scheint auf der Erde unmittelbar vor seiner Ankunft am fernen Stern lediglich 4 × 0,8 = 3,2 Jahre verstrichen zu sein. Während der Umkehrphase verstreichen aber auf der Erde seiner Ansicht nach zusätzlich 3,6 Jahre. Zusammen mit den 3,2 Jahren auf dem Rückweg sind also auch aus der Sicht des fliegenden Zwillings auf der Erde insgesamt 10 Jahre verstrichen, während er selbst lediglich 8 Jahre gealtert ist. |
|
Austausch von Lichtsignalen |
|
Bisher wurde dargestellt, was die Beobachter unter Berücksichtigung der ihnen bekannten Ausbreitungsgeschwindigkeit des Lichtes für das reale Geschehen halten. Im folgenden sei beschrieben, was beide Zwillinge unmittelbar sehen, wenn sie einmal pro Jahr ein Lichtsignal zu ihrem Bruder senden. Die Wege von Lichtsignalen im obigen Weg-Zeit-Diagramm sind Geraden mit einer Neigung von 45°. Bezogen auf dieses Beispiel ergeben sich die nebenstehenden Diagramme. Zunächst bewegen sich die Zwillinge voneinander weg, so dass die Lichtstrahlen durch den Dopplereffekt rotverschoben sind. Diese Lichtstrahlen sind im Diagramm rot dargestellt. Nach der Hälfte der Reise bewegen sich die Zwillinge aufeinander zu, so dass die Lichtstrahlen blauverschoben werden, daher sind diese Lichtstrahlen im Bild blau dargestellt. Aufgrund des Relativitätsprinzips messen beide Beobachter die gleichen Zeitintervalle zwischen zwei roten Signalen. Ebenso messen beide dieselbe Zeitspanne zwischen zwei blauen Signalen, wobei diese Zeitspanne kürzer ist, als die Zeitspanne zwischen zwei roten Signalen, was im Bild sofort klar wird. Damit führt die Annahme, beide Zwillinge wären nach der Rückkehr gleich alt, so dass beide Zwillinge gleich viele Signale vom anderen empfangen hätten, nun aber zu einem Widerspruch. Denn während der reisende Zwilling am Umkehrpunkt und damit nach der halben Reisezeit sofort die zeitlich komprimierten Signale erhält, erreichen den irdischen Zwilling die gedehnten Signale noch länger. Aufgrund des Relativitätsprinzips bekommt also der Beobachter, der für einen längeren Zeitraum blauverschobene Signale erhält insgesamt mehr Signale, als der andere. Der reisende Zwilling bekommt also mehr Signale, als der Zwilling auf der Erde, so dass beide übereinstimmend feststellen, dass der reisende Zwilling langsamer gealtert ist. Im Zahlenbeispiel des nebenstehenden Bildes sieht der reisende Zwilling, bedingt durch eine Kombination von relativistischen Effekten und Laufzeiteffekten, den irdischen zunächst in 4 Jahren um 2 Jahre altern und in weiteren 4 Jahren um 8 Jahre, insgesamt also um 10 Jahre. Der irdische Zwilling sieht entsprechend den Reisenden zunächst in 8 Jahren um 4 Jahre altern und anschließend in 2 Jahren um 4 Jahre, insgesamt also um 8 Jahre. |
|
Dieser Bericht unterliegt der GNU Lizens für freie Dokumentation by Klaus www.mysterylands.eu |